
Guided Tour — Gelman & Hill, Chapter 2

1 Probability Distributions

This section presents an extremely compact review of basic facts about prob-
ability theory.

Normal Distribution: Means and Variances This section reviews some
basic facts about the Normal distribution, the Central Limit Theorem, and
Linear Combinations.

Some comments:

1. The bell-shaped normal curve arises frequently in nature because of
the phenomena summarized in the Central Limit Theorem. Sums of
independent random variables tend toward a normal distribution, so
long as certain conditions hold.

2. Here are some additional facts worth mentioning:

� The sum of a group of variables is a special case of a linear combi-
nation. The general behavior of linear combinations (in particular
their mean, variance, covariance, correlation) is discussed in de-
tail in the Psychology 310 lecture notes. A special case of these
results is that, if the variables summed are independent, then the
mean of their sum is the sum of their means, and the variance of
their sum is the sum of their variances. However, it is important
to realize that the theory underlying these results assumes that
the linear weights defining the linear combination are constants,
not random variables!

� If you are not thoroughly familiar with the facts about linear
combinations, you should go to the Psychology 310 page and
review the lecture notes on linear combinations.

� Sums of independent normal variables are always normal (as are
all linear combinations of independent normal variables). Sums of
multivariate normal random variables are always normal. How-
ever, sums of normal non-independent random variables need not
be exactly normal.

� G&H discuss the heights of all adults, and point out that the dis-
tribution of heights of U.S. adults is much less normal than the
distribution of the heights of men (or women). There are several
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ways of looking at these facts, and G&H choose one. However,
another way of looking at this is as follows. The overall distribu-
tion of adult heights is a mixture of two distributions, men and
women. In general, mixtures need not have the same shape as
the distribution being mixed.

� On page 14, G&H point out that linear regression coefficients have
an approximate normal distribution. Out of thin air, they give the
formula for (sample) linear regression weights as (X ′X)−1X ′y.
This is a well-known result in multivariate statistics, when X
contains the predictors and y the criterion. Note that each row
of (X ′X)−1X ′ takes a different linear combination of the scores
in y. If y has a reasonably large number of scores in it, then the
Central Limit Theorem Effect will take hold and indeed the re-
sulting regression coefficients will have an approximately normal
distribution. A technical point omitted in this discussion is that
X in classic regression is considered fixed, not random. Strictly
speaking, this model is inappropriate for many if not most ap-
plications of linear regression, but the assumption makes things
much more mathemetically tractable. Notice that if X is fixed,
so is (X ′X)−1X ′, and so you are applying a constant set of linear
weights to y.

3. On page 15, G&H repeat the discussion from the previous page! This
time, they point out that X is assumed to be constant. It is important
to realize that if X is not a constant, then β is not a fixed linear
combination of y and different theory holds. As a simple example,
suppose that y has a normal distribution and X is fixed. Then β is a
fixed linear combination of independent normal variables and must be
exactly normal. Now suppose that X contains random variables. In
this case, the beta weights are no longer necessarily normal.

The discussion of the Poisson distribution gives 3 examples. Let’s build
(and solve) some questions surrounding these examples:

� If the cancer rate in your county is 4.52, what is the probability that
there will be 7 or more cancer cases this year? To begin with, we
need to recall that the Poisson cumulative probability is ppois and
the density is dpois. The Poisson is a discrete distribution and can
take on any non-negative integer value. The probability of 7 or more
cases is one minus the probability of 6 or fewer cases, so we need
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> 1 - ppois(6,4.52)

[1] 0.1715203

What is the probability that the number of cases will be between 3
and 6? We can use a neat trick in R to compute this directly.

> sum(dpois (3:6,4.52))

[1] 0.6571387

How did that work? Dissecting the interior part of the statement, we
see that the dpois function was applied to the range of values 3:6,
thereby producing a vector of results,

> dpois (3:6,4.52)

[1] 0.1675919 0.1893788 0.1711985 0.1289695

When we summed those values, we got the total probability.

� In the second example, hits on a website are modeled as Poisson(380).
What is the probability that the number of hits will be between 350
and 400?

> sum(dpois (350:400 ,380))

[1] 0.7960098

Here’s a topical question for you grad students who are TAing. Sup-
pose that you have an office hour, and in your experience, on average
1.2 students come to an office hour. What is the probability that no
students will come to an office hour?

2 Statistical Inference

In this section, G&H take pains to point out the distinction between sam-
pling error and modeling error. The key point is made in connection with a
simple linear regression model. Even if we had the entire population, there
would generally still be an error of regression estimate, because models vir-
tually never fit perfectly.

3



There is a brief discussion of standard errors and parameter estimates.
The standard error of the sample mean is

σX =
√
σ/N

The standard error of the sample proportion p̂ is

σp̂ =
√
p(1− p)/N

. The above formulae are used frequently to construct simple statistical tests
and confidence intervals. In practice, of course, we do not know either σ or
p, so we substitute consistent estimators in the above formulas. When we do
that, the resulting formulas are estimated standard errors. So, for example,
a strict notation would say

σ̂p̂ =
√
p̂(1− p̂)/N (1)

They also point out in a footnote that in the case where the sample propor-
tion p̂ is 0, this leads to a standard error of zero, which precludes meaning-
ful confidence intervals or hypothesis tests. They refer to a neat paper by
Agresti and Coull (1998) that suggests a simple correction, i.e., when p̂ = 0,
substitute (y + 1)/(N + 2), where y is the number of “successes” and N the
sample size.

In general, G&H take a refreshingly practical yet rigorous approach to
fitting models, and they like to concentrate on things that consistently mat-
ter, rather than things that might matter. G&H do not, in general, maintain
the distinction between “standard errors” (which are constants) and “esti-
mated standard errors” (which are random variables). G&H are certainly
not alone in this notational imprecision, and asymptotically, it makes no
difference and in practical terms it usually matters only a bit. However, as
any typical textbook chapter on Student’s t emphasizes, there is a difference
and at small samples it can matter.

3 Classical Confidence Intervals

The classical approach to confidence interval generation using asymptotic
normal theory is covered in great detail in my Psychology 310 course hand-
out, “A Unified Approach to Some Standard Statistical Tests”. Essentially, if
you have a linear combination of parameters, and you have for each parame-
ter and estimator and an estimate of its standard error, you can immediately
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construct formulas for confidence intervals. In particular, if the estimates
are independent, and the linear combination you are interested in is

J∑
i=1

θ̂j (2)

then the standard error is √√√√ J∑
i=1

c2j σ̂
2
θ̂j

(3)

So, for example, suppose you are interested in the difference between two
proportions, p1 and p2 for two separate populations. The difference p̂1 − p̂2

is a linear combination with linear weights +1 and −1. So, the standard
error of p̂1 − p̂2 √

p̂1(1− p̂1)
N1

+
p̂2(1− p̂2)

N2
(4)

G&H begin by giving some code for the classic simple confidence interval.
These are of the form

estimator ± Z∗ × SE (5)

where SE is the standard error and Z∗ is a percentage point from either
the normal or t distribution. In general, the percentage points for a 95%
confidence interval are the 2.5 and 97.5 percentile points. A 68% confidence
interval uses Z∗ of 1. G&H mix a variety of minor computational variations
in these brief examples. I’ll add comments to the R code. Here we compute
the 95% confidence interval for a single mean for a simple data set of 5
observations

> y ← c(35 ,34 ,38 ,35 ,37)
> n ← length(y)
> # compute N

> estimate ← mean(y)
> se ← sd(y) / sqrt (n)
> int.95 ← estimate + qt(c(.025 ,.975),n-1) * se
> # notice how both confidence limits are computed simultaneously

> # by inputting a vector of percentage points !
> int.95

[1] 33.75974 37.84026

5



On page 20, G&H give an example of a confidence interval produced by
statistical simulation. In this example, samples of 500 men and 500 women
have yielded the result that the death penalty was supported by 75% of
the men and 65% of the women. We would like to estimate the ratio of
support among men to that of women. A point estimate is 75/ 65 = 1.15.
To construct a confidence interval, they do the following:

1. Treat the sample proportions as if they were population proportions

2. Pretend that the sample proportion has an exactly normal distribution
(not a bad approximation when N = 500

3. Take 10,000 simulations of p̂1 and p̂2. For each, compute the ratio
p̂1/p̂2.

4. The 95% confidence interval has endpoints given by the 2.5th and
97.5th percentile of the 10,000 simulated ratios.

Here is the commented code:

> ## set up men

> n.men ← 500
> p.hat.men ← 0.75
> se.men ← sqrt (p.hat.men *(1 -p.hat.men)/n.men)
> ## set up women

> n.women ← 500
> p.hat.women ← 0.65
> se.women ← sqrt (p.hat.women *(1 -p.hat.women)/n.women)
> ## do 10,000 simulations

>
> n.sims← 10000
> ##rnorm creates normal random numbers

> simulations.of.p.hat.for.men ← rnorm(n.sims ,p.hat.men ,se.men)
> simulations.of.p.hat.for.women ← rnorm(n.sims ,p.hat.women ,se.women)
> ## we divide the two vectors of simulated sample proportions all at once

> simulations.of.ratio ← simulations.of.p.hat.for.men / simulations.of.p.hat.for.women
> int.95 ← quantile (simulations.of.ratio , c(.025 ,.975))
> int.95

2.5% 97.5%
1.062624 1.252238
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4 Classical Hypothesis Testing

Confidence intervals can be used to test a null hypothesis that a parameter
is a specified value. If the confidence interval excludes the specified value,
we reject the null hypothesis.

In this section, G&H give an example of testing a distributional hypoth-
esis by examining an assumption inherent in the choice of distribution. The
Poisson distribution has a variance that is equal to its mean. One can there-
fore falsify the assumption that the data follow a Poisson distribution by
examining the ratio of the variance to the mean. If the variance is signifi-
cantly higher than the mean, then the data show overdispersion, while if the
variance is significantly lower than the mean, the data show underdispersion.

In many textbook treatments of classical hypothesis testing in analysis
of variance, substantial attention is paid to the issue of multiple testing and
familywise error rate. The problem is that if you do many tests, and all
the null hypotheses are actually true, the probability that at least one false
positive will occur quickly rises toward 1.

G&H take the strong position on p. 22 that this isn’t much concern to
them. This is based on the view that null hypotheses of equality are almost
invariably false in science.

5 Problems with Statistical Significance

In this section G&H point out some pitfalls with using “statistical signifi-
cance” or a p-value as a scientific indicator. A key point is that differences
in significance need not be significant. The classic example from Psychology
310 is this. Suppose you reject the hypothesis that µ1 − µ2 = 0 but do not
reject the hypothesis that µ3 − µ4 = 0. This does not mean that there is
a significant “difference of differences” (or interaction effect). For example,
you might have barely rejected the first hypothesis and barely not rejected
the second.

6 55,000 Residents Desperately Need Your Help

This is a nice example of statistical inference in practice. It draws on a
number of principles dealt with in the earlier sections. Try to follow it
closely and delineate where (if anywhere) you have trouble following the
argument.
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